BandeauWeb_IOMAC25V3.png

Model Updating of Rotating Wind Turbines Using Operational Modal Analysis and Floquet Mode Decomposition
Nina Delette  1, 2, *@  , Enora Denimal Goy  3@  , Jean-Lou Pfister  1@  , Laurent Mevel  2@  , Reda El Amri  4@  
1 : IFP Energies nouvelles
IFPEN, IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
2 : Inria Rennes – Bretagne Atlantique
Univ. Gustave Eiffel, Inria, COSYS-SII, I4S, 35042 Rennes, France
3 : Inria, CMAP, Ecole Polytechnique, IPP, Palaiseau, France
Institut National de Recherche en Informatique et en Automatique
Campus de l'École polytechnique, 91120 Palaiseau -  France
4 : IFP Energies nouvelles
IFPEN, IFP Énergies nouvelles, Rond-point de l'échangeur de Solaize, 69360 Solaize, France
* : Corresponding author

The structural complexity of modern wind turbines, combined with numerous uncertain or unknown parameters, presents significant challenges for accurate predictive modeling. Model updating, which refines numerical model parameters using measurement data, offers a means to mitigate these discrepancies. While extensively applied to stationary structures, its extension to rotating wind turbines remains limited, as their time-periodic dynamics violate key assumptions underlying conventional methods. This study develops a numerical framework for model updating of rotating wind turbines based on an equivalent Linear Time-Invariant (LTI) approximation, derived through a Fourier decomposition of the system's Floquet modes. A simplified 5 Degrees of Freedom (DoF) turbine model is employed to evaluate the effectiveness of a deterministic model updating strategy leveraging this approximation. Synthetic vibration data, generated from the model using a predefined parameter set, serve as reference measurements for assessing parameter recovery accuracy. Modal features extracted via Operational Modal Analysis (OMA) are used to construct the cost function that quantifies discrepancies between predicted and observed modes. The results underscore the potential of equivalent LTI representations in facilitating model updating for rotating systems, as they effectively capture the modal characteristics identified via OMA. This study establishes a foundation for extending this methodology to more complex, industrial-scale wind turbine models, provided that the computational cost of model evaluation remains manageable.


Loading... Loading...